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Pinholes may mimic tunneling
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Interest in magnetic-tunnel junctions has prompted a re-examination of tunneling measurements
through thin insulating films. In any study of metal–insulator–metal trilayers, one tries to eliminate
the possibility of pinholes~small areas over which the thickness of the insulator goes to zero so that
the upper and lower metals of the trilayer make direct contact!. Recently, we have presented
experimental evidence that ferromagnet-insulator-normal trilayers that appear from current–voltage
plots to be pinhole-free may nonetheless, in some cases, harbor pinholes. Here, we show how
pinholes may arise in a simple but realistic model of film deposition and that purely classical
conduction through pinholes may mimic one aspect of tunneling, the exponential decay in current
with insulating thickness. ©2001 American Institute of Physics.@DOI: 10.1063/1.1344220#
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TUNNEL JUNCTIONS

The construction of magnetic tunnel junctions with lar
room-temperature magnetoresistance1 has triggered an in-
tense research effort, as groups have applied them
magnetic-field sensors,2 memory devices,3,4 and magnetic-
medium read heads.5 The current technological drive towar
a lower product of resistance and area,6,7 which implies the
use of thinner and thinner insulating barriers, has reope
the question of how to rule out the presence of pinho
direct metal–metal contacts through the nominally insulat
barrier. Recent high magnetoresistances of up to 300%
room temperature observed in magnetic nanocontacts8–10

raise the intriguing question of whether conduction throu
pinholes might actually contribute to the magnetoresista
of tunnel junctions. Similarly, any study of anomalous c
pacitance of magnetic tunnel junctions11,12 must take pin-
holes into account. To exclude the possibility of pinhol
Rowell and others in the 1960s and 1970s developed a s
criteria to distinguish tunneling from other current paths13

Three of these criteria continue to apply when neither e
trode superconducts:~1! the exponential thickness depe
dence of the current,~2! the parabolic shape of the differen
tial conductance as a function of voltage, and~3! the
temperature dependence of the conductivity.

We have recently constructed a series of junctions d
onstrating experimentally that the second criterion app
alone cannot distinguish pinhole conduction fro
tunneling.14,15 The present work will show the first criterio
similarly unreliable, since a purely classical conduction p
through pinholes may under realistic assumptions mimic
exponential thickness dependence of the conduction cur
This leaves only the temperature dependence of conduct
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as a good criterion for determining whether a junction co
tains pinholes.

Garcı́a has shown thatballistic electron conduction
through sufficiently small pinholes yields the same spin p
larization as tunneling through an oxide layer, so that m
netoresistance cannot distinguish the two processes.10 Klein-
sasseret al.16 have shown that another of the propos
signatures of tunneling in superconducting-insulator-norm
junctions, the subharmonic gap structure, may similarly
dicate pinhole conduction, but the problem of flushing o
pinholes from normal-metal junctions remains.

Small pinholes may be invisible to surface microscop
although recently ‘‘hot spots’’ have been observed us
scanning tunneling microscopy.17 The resistance-area prod
uct RA of a junction being typically of the order of 1 kVm2

and RA of a metallic contact on the order of18 1 mVm2,
pinhole regions of one part in 106 must be ruled out to ensur
no pinhole conduction in parallel with tunneling. Genera
speaking, this is very difficult to do and not commonly co
sidered. Recognizing the technological, as well as scient
importance of identifying pinholes in magnetic tunnel jun
tions, Schadet al.have developed a method for imaging pi
holes through decoration by electrodeposited copper.19 This
tool complements criterion~3! of temperature dependenc
and further highlights the risks of relying solely on thickne
dependence and differential conductance.

Our previous experimental results, the classical mo
considered later, Garcı´a’s theory of ballistic magnetoresis
tance, and the results of Refs. 16–19 all suggest that pinh
might contribute to conduction in apparently ‘‘high-quality
junctions.

TUNNELING VERSUS PINHOLE CONDUCTION

In a series of metal–insulator–metal trilayers in whi
the insulating thickness,z, varies, the current at given volt
age should decay exponentially inz ~the applied voltage is

art,
6 © 2001 American Institute of Physics
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assumed less than the insulating gap!. Such exponential de
cay has been cited as experimental evidence for good tu
junctions.20 By the Wentzel–Kramers–Brillouin approxima
tion, the characteristic decay length equals

z05
\

2~2mf!1/2, ~1!

wherem is an effective mass andf a potential energy on the
order of the barrier height. Forf51/4 eV andm the bare
electron mass,z0;2 Å. Notably, for realistic parametersf
andm, this decay length coincides roughly with the thickne
of a single atomic layer. In contrast, a classical resistor s
ports a current inversely proportional to the thickness.

The inverse relationship holds for a perfectly even lay
but real deposition processes leave an uneven insulator
possible pinholes. The simplest model for classical cond
tion by pinholes gives an exponential dependence of re
tance on deposited thickness, mimicking quantum tunnel
Consider a metallic substrate on top of which we random
deposit cubes of a perfect insulator to an average heighm
~measured in monolayers!. This is not a uniform height, so
there may be pinholes. We then deposit a perfect condu
making contact through any pinholes with the metal s
strate. Since the insulator and overlayer are perfect, con
tion is directly proportional to contact area and inversely
the metal–metal contact resistance,R0 .

We consider deposition to take place on a regular tw
dimensional grid, each cell of which may be occupied by a
non-negative integral height~0, 1,...! of insulating particles.
If each deposited particle can land randomly over any g
cell, the resulting heights follow a Poisson distribution.
the limit of an infinite two-dimensional grid, the probabilit
that any given grid cell contains no insulating particles
exp(2m). For a large system, this is also the expected p
portion of cells that will be unoccupied and so proportion
to the conduction. Thus, where tunneling can lead to
exponential-decay length of a monolayer for certain reali
parameters, the simple classical modelalwaysgives a decay
length of one layer.

This trivial model ~perfect insulating blocks! predicts
conductance that decays exponentially in coveragem for all
coverages. However, one expects a crossover to 1/m decay at
larger coverages. The simplest extension of the model
might display such behavior deposits blocks randomly,
the insulators now have some finite resistance,R. In the re-
gime of interest,R@R0 . As before, we depositM blocks
over anL3L lattice for a coveragem5M /L2 ~with length
measured in units of monolayer thickness!. A face between
the metal overlayer and an insulating block has resistancR,
as does a face between two insulating blocks. Any conn
tion to ground has contact resistanceR0 . To make a simple
model, we first turn off sideways conduction in the insu
tors, reducing the problem to that of an ensemble of indep
dent columns of binomially distributed resistors in parall
We compare this ‘‘independent-column’’ model to nume
cal calculations later. Finally, we shall consider numerica
an isotropic model.

Our growth model, adapted from work by Pal an
Landau,21–23agrees with surface probes on a large scale
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plausibly describes on a small scale deposited insulating
films. We do not explicitly consider the morphology ofin
situ oxidized aluminum as an insulating layer. Qualitative
however, the process should resemble surface diffusion in
far as it fills in some pinholes. We emphasize that we do
rule out the possibility of growing pinhole-free films; rathe
we acknowledge that some films do contain pinholes a
examine how their conductivities scale with mean thickne
The detailed calculations preserve the salient exponentia
pendence on nominal thickness in the regime of inter
~2–25 layers!, even in the presence of more realistic e
ments such as imperfect insulators and surface diffusion24

INDEPENDENT-COLUMN MODEL

Each independent column containsn resistors of value
R, wheren is the column height, and one contact resistor
valueR0 . Lettings5R0 /R, we have for the average colum
conductancê s&5^1/(n1s)R&. In the Poisson limit,L2

→`, the scaled conductance

S5R^s&5e2m (
n50

`
mn

n! ~n1s!

5e2mm2sE
0

m

ts21etdt5
1

s
e2m

1F1~s,s11;m!.

~2!

Here,1F1 is a confluent hypergeometric function.
One arrives at an asymptotic series for largem through

successive integrations by parts,25 exhibiting explicitly the
approach to 1/m conductance

R^s&;m21F11G~s!(
j 51

n
~21! j

G~s2 j !m j G , ~3!

wheren is a cutoff that must be introduced for any finitem.
More interesting is the small-m limit, in which we re-

cover the exponential decay of the trivial model, for mul
plying the top equation in~2! by s, we have

R0^s&5e2mF11s(
n51

`
mn

n! ~n1s!G . ~4!

For small enoughm, R0^s&;e2m, representing exponentia
decay of conductance with coverage.

We can estimate the crossover scalem0 above which the
decay ceases to be exponential by setting the ‘‘1’’ term
parentheses in~4! equal to the remainder. This yields th
condition

251F1~s,s11;m0!. ~5!

For s&0.5, we can replace1F1 with the leading term in its
asymptotic expansion, giving

m0' ln~2/s!. ~6!

The logarithmic form of~6! comes as something of a su
prise: it means that the nonzero contact resistance cuts of
small-coverage, exponential regime no matter how tinyR0 is
relative to the insulatingR.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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2788 J. Appl. Phys., Vol. 89, No. 5, 1 March 2001 Rabson et al.
The solid traces~for differents! in the semilog plot, Fig.
1, clearly show the exponential regime for smallm and the
gradual deviation as pinhole conduction ceases to domin
To display large- and small-m behaviors together, it is help
ful to plot y5d ln S/d ln m5S8m/Sagainstm; the exponential
regime is characterized by a constant slope, while in
asymptotic 1/m regime, the graph approaches the const
y521 ~inset to Fig. 1!. In this independent-column mode
the minimum of the graph corresponds closely to the e
mate ~6!; later, in numerical simulations incorporating su
face relaxation, we see deviations somewhat earlier.

We have assumed the ratios small, as supported by th
following estimate. Using Sharvin’s semiclassic
calculation26 for contact resistance through a pinhole of d
ameter;1 Å, and assuming a typical metallic Fermi tem
perature and electronic density, we have contact resista
R0;104 V. The ‘‘classical’’ resistance of an insulatin
block is less well defined, but a minimum resistivi
;106 V cm suggestsR*1014V, so thats5R0 /R&10210,
tiny indeed. We then estimate by~6! that insulating thick-
nesses up to about 24 monolayers should show expone
resistance.

NUMERICAL SIMULATIONS

The preceding model provides a base line for our sim
lations. In addition to restoring conduction through the sid
of blocks, we adopt a model due to Pal and Landau21–23 to
describe the motion of insulating blocks along the surfa
after they have fallen. Such models have found good ag

FIG. 1. Scaled conductances~solid traces! given by ~2! for three values of
the ratios of contact to insulating resistance. According to the estimate~6!,
they begin to cross over from exponential to inverse-thickness behav
about 5.3, 7.6, and 9.9. For comparison, we define the heuristic measurm15

as the point at which the slope deviates from21 by 15%; the corresponding
estimates are 4.4, 7.2, and 9.8. The dotted line (s50) is an exact exponen
tial. The dot-dashed line shows a numerical simulation~100 000 trials on
535 grids! for s50.0001 withJ520.5, diffusionx51/3, and ‘‘up’’-steps
allowed. The inset plots the same curves in a way that makes explici
approach to 1/m conductance (d ln S/d ln m521, horizontal line! as well as
the initial exponential regime. Note that surface relaxation in this c
causes a more rapid deviation from exponential decay (m1556.1) while also
delaying the onset of 1/m conductance.
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~large-m! features, although our interest lies in the oppos
regime.

For simplicity, we imagine the original metallic layer t
be flat.27 After depositing some number of blocks in th
manner of the previous section, we allow a fraction of bloc
at the interface to diffuse one unit along the surface. W
employ a quasi-Metropolis procedure to determine whet
to accept or reject each move~the system is not at equilib
rium! with an energyJ for each face-to-face bond betwee
blocks: callingD the change in the number of bonds, th
move is accepted unconditionally if it lowers the energy a
otherwise with probability exp(2DJ/kB T). Henceforth, we
scaleJ by setting the thermal energykBT51. Thus, a nega-
tive J encourages clustering, while a positiveJ could repre-
sent stearic hindrance or an affinity for roughness. We ad
one more feature from the Pal–Landau models: blocks ei
may or may not jump ‘‘up’’ ~further away from the sub-
strate! while relaxing.23

We perform the simulation on anL3L grid, measuring
conductance at set times, before averaging over many t
to reduce noise. Since long-wavelength features donot con-
cern us in the present work,L can be as small as allowed b
diffusion. Consider the diffusion parameterx defined as the
fraction of interface blocks diffusing one lattice spacing p
monolayer deposited. A simple random-walk argument
tablishes that forx of order unity, we can look at coverage
as great as about 25 for a 535 grid. Numerically, we tested
values ofL from 5 to 60 and found no significant difference
in conductances. The actual diffusion parameterx of course
will depend on temperature and physisorption and che
sorption energies. We considered diffusion parameterx

FIG. 2. The horizontal axis measures the bond strength~negative attracts
blocks!, the vertical an estimated maximum thickness for the mimicry
tunneling, specifically the empirical measurem15 at which the slope of a
semilog plot, as in Fig. 1, deviates by 15% from21. For comparison, the
cutoff estimates~6! without relaxation fors50.01, 0.001, and 0.0001 ar
5.3, 7.6, and 9.9. Blocks may jump up in these traces.
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50.33– 10, roughly corresponding to a fast, but not unre
istic, deposition rate.28

This model must behave the same as the indepen
columns in the two limits of zero and large coverage, but
Fig. 1 shows, surface relaxation can reduce the thicknes
which deviations from exponential decay first become app
ent, primarily by modifying the rate at which pinholes fill in
Because the deviation occurs continuously, we need a
ristic measure. The slope of the line in a semilog plot~Fig. 1!
determines the decay length; in both the simple model
the simulations, it always starts out at21. Such a plot ap-
pears to differ by eye from a straight line when the slo
changes by 15%; we call this crossover scalem15. As noted
in the caption to Fig. 1, it also agrees reasonably well w
the analytical crossover estimate~6! for the independent-
column model with no relaxation.

Figure 2 plotsm15 as a function of bond strength,J, for
a few selected values ofs and the relaxation parameter,x.
We find that relaxation still permits a large value form15 for
particular ranges ofJ. When blocks are permitted to jum
up, there is a tendency for pinholes to be extinguished
quickly than exponentially~see dot-dashed curve in Fig. 1!,
since at moderate coverage more columns of height 1
into pinholes thanvice versa. A sufficiently attractive~nega-
tive! J counters this tendency by discouraging jumps out
height-1 columns, but too large a negative value ofJ leads to
superexponential decay. In the model without jumps, a s
ficiently large positive~repulsive! J effectively cancels the
effect of surface relaxation on pinholes.

In some cases, we find that a reasonably large negatiJ
can effectively alter the exponential-decay length over so
range of coverages; see Fig. 3. To get a decay length
stantially different from one monolayer, we need to mod
the model. For example by prohibiting direct deposition
top of isolated pinholes~as by stearic hindrance!, filling

FIG. 3. An example of a different effective slope: the dotted line is an ex
exponential. Between the arrows (↑...↑m'1...7), it is difficult to distin-
guish the simulated decay with relaxation (s50.0001,x51/3,J522) from
a straight line of slope; 21.25, i.e., a decay length of 0.8 monolayers. N
smoothing has been applied to the main graph. The inset shows the slo
the decay; the solid line applies parametric smoothing.
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decay length and a larger crossover scale~not shown!.

IMPLICATIONS FOR EXPERIMENT

We have concentrated on one signature of tunneli
showing that purely classical pinhole conduction can mim
the exponential dependence of resistance on barrier th
ness. We have recently demonstrated experimentally tha
other signature, the nonlinear form of currentI (V) ~as a
function of biasV)29,30 also may fail to distinguish classica
conduction from tunneling.14 In a series of ferromagnet
insulator-metal junctions in which the ‘‘metal’’ is actually
superconductor, all samples could be fit well to a tunnel
form above the superconductor’s transition temperature,Tc .
However, some~but not all! showed Andreev reflection be
low Tc , indicating the presence of pinhole shorts through
insulator.31 In other words, samples that appear@according to
dI/dV and thickness dependenceI (z)# to be good tunnel
junctions may not be.

We would expect that increasing temperature should
hance current through a tunnel junction~effectively lowering
the barrier! while suppressing conduction through any met
lic short. In fact, we found that the temperature depende
of currentI (T) at zero bias does distinguish the pinhole-fr
from the shorted samples.
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14B. J. Jönsson-Åkerman, R. Escudero, C. Leighton, S. Kim, I. K. Schulle

and D. A. Rabson, Appl. Phys. Lett.77, 1870~2000!.
15H. Srikanth and A. K. Raychaudhuri, Phys. Rev. B46, 14713~1992! find

a change in the sign of curvature of differential conductance, due to l
heating, for a series of scanning-tunneling point contacts ranging f
microshorts to tunnel junctions. Their well-defined point contacts dif
from our accidental pinholes.

16A. W. Kleinsasser, R. E. Miller, W. H. Mallison, and G. B. Arnold, Phy
Rev. Lett.72, 1738~1994!.

17W. Wulfhekel, B. Heinrich, M. Klaua, T. Monchesky, F. Zavaliche, R
Urban, and J. Kirschner~unpublished!.

18W. P. Pratt, Jr., S.-F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder,
J. Bass, Phys. Rev. Lett.66, 3060~1991!.

19R. Schad, D. Allen, G. Zangari, I. Zana, D. Yang, M. Tondra, and

t

of
P license or copyright; see http://jap.aip.org/jap/copyright.jsp



,

po
de
K

r

oles
E. E.

rier

ing
dreev

2790 J. Appl. Phys., Vol. 89, No. 5, 1 March 2001 Rabson et al.
Wang, Appl. Phys. Lett.76, 607 ~2000!; D. Allen, R. Schad, G. Zangari
I. Zana, D. Yang, M. Tondra, and D. Wang, J. Appl. Phys.87, 5188
~2000!.

20R. Meservey, P. M. Tedrow, and J. S. Brooks, J. Appl. Phys.53, 1563
~1982!.

21S. Pal and D. P. Landau, Phys. Rev. B49, 10597~1994!.
22D. P. Landau and S. Pal, Thin Solid Films272, 184 ~1996!.
23D. P. Landau and S. Pal, Langmuir12, 29 ~1996!.
24Having shown that surface diffusion and sticking fail to destroy the ex

nential regime, we expect this result will also carry over into more
tailed molecular-dynamics calculations of the type carried out by I.
Schuller, MRS Bull.XIII , Nov., 23~1988!.

25C. M. Bender and S. A. Orszag,Advanced Mathematical Methods fo
Scientists and Engineers~McGraw-Hill, New York, 1978!.

26Yu. V. Sharvin, Zh. Eksp. Teor. Fiz.48, 984~1965! @ Sov. Phys. JETP21,
655 ~1965!#.
Downloaded 22 Oct 2008 to 132.239.69.137. Redistribution subject to AI
-
-
.

27One might also model the effect of polishing scratches in seeding pinh
by imposing a surface potential on the substrate; see D. J. Keavney,
Fullerton, and S. D. Bader, J. Appl. Phys.81, 795 ~1997!.

28D. L. Smith, Thin-Film Deposition: Principles and Practice~McGraw-
Hill, New York, 1995!.

29J. G. Simmons, J. Appl. Phys.34, 1793~1963!.
30W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys.41, 1915

~1970!.
31G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B25, 4515

~1982!; G. E. Blonder and M. Tinkham,ibid. 27, 112 ~1983! examine the
crossover from Andreev reflection to tunneling as the insulating bar
increases in strength. As a practical matter, with a typical band gap~;10
eV!, the Andreev signature should become insignificant for insulat
thicknesses greater than a few monolayers. Thus, the presence of An
reflection indicates either a pinhole or a ‘‘near’’ pinhole.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp


	Text9: 348


